Dynamic Maximum Entropy Reduction
نویسندگان
چکیده
منابع مشابه
Spectral Dimensionality Reduction via Maximum Entropy
We introduce a new perspective on spectral dimensionality reduction which views these methods as Gaussian random fields (GRFs). Our unifying perspective is based on the maximum entropy principle which is in turn inspired by maximum variance unfolding. The resulting probabilistic models are based on GRFs. The resulting model is a nonlinear generalization of principal component analysis. We show ...
متن کاملTsallis Maximum Entropy Lorenz Curves
In this paper, at first we derive a family of maximum Tsallis entropy distributions under optional side conditions on the mean income and the Gini index. Furthermore, corresponding with these distributions a family of Lorenz curves compatible with the optional side conditions is generated. Meanwhile, we show that our results reduce to Shannon entropy as $beta$ tends to one. Finally, by using ac...
متن کاملDetermination of Maximum Bayesian Entropy Probability Distribution
In this paper, we consider the determination methods of maximum entropy multivariate distributions with given prior under the constraints, that the marginal distributions or the marginals and covariance matrix are prescribed. Next, some numerical solutions are considered for the cases of unavailable closed form of solutions. Finally, these methods are illustrated via some numerical examples.
متن کاملReduction of Maximum Entropy Models to Hidden Markov Models
Maximum Entropy (maxent) models are an attractive formalism for statistical models of many types and have been used for a number of purposes, including language modeling (Rosenfeld 1994), part of speech tagging (Ratnaparkhi 1996), prepositional phrase attachment (Ratnaparkhi 1998), sentence breaking (Reynar and Ratnaparkhi 1997) and parsing (Ratnaparkhi 1997). Maxent models allow the combinatio...
متن کاملDiscussion of "Spectral Dimensionality Reduction via Maximum Entropy"
Since the introduction of LLE (Roweis and Saul, 2000) and Isomap (Tenenbaum et al., 2000), a large number of non-linear dimensionality reduction techniques (manifold learners) have been proposed. Many of these non-linear techniques can be viewed as instantiations of Kernel PCA; they employ a cleverly designed kernel matrix that preserves local data structure in the “feature space” (Bengio et al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2019
ISSN: 1099-4300
DOI: 10.3390/e21070715